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Abstract—This paper addresses the problem of estimating
sparse channels in massive MIMO-OFDM systems. Most wireless
channels are sparse in nature with large delay spread. In
addition, these channels as observed by multiple antennas in a
neighborhood have approximately common support. The sparsity
and common support properties are attractive when it comes to
the efficient estimation of large number of channels in massive
MIMO systems. Moreover, to avoid pilot contamination and to
achieve better spectral efficiency, it is important to use a small
number of pilots. We present a novel channel estimation approach
which utilizes the sparsity and common support properties to
estimate sparse channels and require a small number of pilots.
Two algorithms based on this approach have been developed
which perform Bayesian estimates of sparse channels even when
the prior is non-Gaussian or unknown. Neighboring antennas
share among each other their beliefs about the locations of active
channel taps to perform estimation. The coordinated approach
improves channel estimates and also reduces the required number
of pilots. Further improvement is achieved by the data-aided ver-
sion of the algorithm. Extensive simulation results are provided
to demonstrate the performance of the proposed algorithms.

Keywords—massive MIMO, large-scale antenna array, sparse
channel estimation, distributed channel estimation, distribution
agnostic.

I. INTRODUCTION

The deployment of multiple antennas in a wireless com-
munication system offers key advantages to its performance
in terms of power gain, channel robustness, diversity, and
spatial multiplexing. The use of multiple antennas in rich
scattering environments provides effective utilization of the
scarcely available spectrum resources. As a result, multiple-
input-multiple-output (MIMO) technology has gained much
interest in the research community.

Installing extra antennas to a MIMO system can introduce
substantial enhancements in both link reliability and data
throughput of the system [1]. Specifically, the use of very large
antenna arrays (in the order of multiples of a hundred antennas)
has been found to be beneficial to overcome problems en-
countered in traditional MIMO settings. Such systems, known
as massive MIMO or large-scale MIMO [2],[3], also have
the potential to scale down the transmission power because
of the use of small active antennas with very low power.
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Moreover, in massive MIMO systems fast fading is averaged
out and intracell interference almost vanishes. Thus, using
large antenna arrays can play a key role in exploiting the true
potential of traditional MIMO systems while at the same time
overcoming several challenges. Massive MIMO is therefore
considered as an emerging key technology that can meet the
growing demands of current wireless systems. For interested
readers, some other advantages of adding more antennas to the
base station (BS) have been discussed in [4]–[6].

In order to benefit from the advantages of massive MIMO
systems, we need to determine the channel impulse response
(CIR) for each transmit-receive link. In a typical massive
MIMO system, a BS is equipped with a large antenna array and
communicates with several users resulting in a large number of
channels that need to be estimated. This results in a substantial
increase in complexity which causes performance limitations at
the BS. Obviously, obtaining CIR requires training data (pilots)
to be sent by the users. It is known that the number of pilot
symbols required is proportional to the total number of users
[4]. Therefore, as the number of users increases, there is a
higher chance that the pilot sequences in the neighboring cells
interfere with each other. This pilot contamination problem is
a major limiting factor for the massive MIMO systems [7], [8].
However, pilot contamination could be reduced if the reserved
number of pilot tones is reduced. Therefore, in a multi-user
scenario there is a need to reduce the number of pilots without
affecting the CIR quality. Hence the development of efficient
channel estimation techniques for massive MIMO that are
computationally less complex and require less number of pilots
is a challenge that needs to be thoroughly addressed.

Massive MIMO channel estimation is similar to the MIMO
channel estimation. Existing literature includes several meth-
ods proposed for channel estimation in MIMO systems [9]–
[13]. However, it is difficult to directly adopt these approaches
for a number of reasons. For example,

1) There is a need to reduce the number of pilots.
2) All received (thousands of) signals in a massive MIMO

system can not be processed efficiently at one central pro-
cessor. Therefore, there is a need for methods/algorithms
which are a) distributed; b) computationally efficient; and
c) require little communication overhead.

3) The antenna arrays could spread over a large space
making it quite different in its model than a regular
compact MIMO receiver.

Recent works have indicated increased interest in the prob-
lem of massive MIMO channel estimation (see for example
[7], [8], [14]–[16]). Most of these algorithms make use of
the channel statistics. However, these statistics are usually
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not known and therefore some kind of assumption is made
about the distribution of channel taps. Moreover, some of
the techniques involve computationally expensive operations
like inversion of channel covariance matrices which is not
reasonable for the massive MIMO scenario.

In this paper, we propose a set of algorithms for channel
estimation in massive MIMO. Specifically, we consider a base-
station equipped with a large number of antennas serving
several single-antenna user-equipments (UE). Our approach
makes use of the fact that the wireless channel for each
antenna is the wireless channels between a UE and base-
station antennas are expected to be sparse and that neighboring
antennas observe channels with similar support (i.e., sparsity
pattern) but not necessarily the same fading along the active
taps. The antennas share information with their neighbors to
reach a decision on the most probable support. Decisions
are made in a distributed manner with low complexity and
communication overhead. In summary, the set of algorithms
we propose in this paper has the following distinctive features:

1) It utilizes the sparsity of the CIR and the fact that channel
supports for neighboring antennas are approximately the
same.

2) It is Bayesian in nature. It utilizes the sparsity of CIR and
acknowledges the Gaussianity of the additive noise but is
agnostic to the distribution of the active taps of the CIR.

3) It has a distributed nature requiring limited communica-
tion between neighboring antennas. One version of the
algorithm requires only integer communication between
antennas.

4) It has a data-aided extension that identifies reliable carri-
ers and uses them to further reduce the number of pilots
and enhance the CIR estimate.

The distributed Bayesian algorithm we develop in this paper
is based on the Support Agnostic Bayesian Matching Pursuit
algorithm (SABMP) developed by the authors in [17].

The remainder of this paper is organized as follows. In
Section II, we present the system model and formulate the
channel estimation problem. In Section III, we present a simple
channel recovery method and propose enhancements to it that
are required for the development of our coordinated recovery
algorithms proposed in Section IV. A data-aided version of
this algorithm is presented in Section V. Simulation results
are discussed in Section VI and Section VII concludes the
paper. Please note that an extended version of this paper [18]
is also available online.

A. Notation

We denote vectors with small-case bold-face letters (e.g.,
x), matrices with upper-case, bold-face letters (e.g., X), and
reserve calligraphic notation for symbols in frequency domain
(e.g., X ). We use xi to denote the ith column of matrix X
and x(j) to denote the jth entry of vector x. We also use
XS to denote the sub-matrix formed by the columns {xi :
i ∈ S}, indexed by the set S. We use x̂, x∗, xT, and xH

to respectively denote the estimate, conjugate, transpose, and
conjugate transpose of the vector x. Finally we use diag(x) to

transform the vector x into a diagonal matrix with the entries
of x spread along the diagonal.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Transmission Model

We consider a MIMO-OFDM system in which the BS is
equipped with a large two-dimensional antenna array con-
sisting of R = M × G antennas distributed across M rows
and G columns.1 The base station serves a number of single-
antenna terminals. Orthogonal frequency division multiplex-
ing (OFDM) is adopted as the signaling mechanism. In an
OFDM system, serially incoming bits are divided into N
parallel streams and mapped into a Q-ary QAM alphabet
{A1,A2, . . . ,AQ}. This results in an N -dimensional data
vector X = [X (1),X (2), . . . ,X (N)]

T. The equivalent time-
domain signal x is obtained by taking the inverse Fourier
transform of the data vector, i.e.,

x = FHX , (1)

where F is an N×N unitary discrete Fourier transform (DFT)
matrix whose (k, l) entry is given by

fk,l =
1√
N

exp (−2π
N
kl). (2)

A cyclic prefix is inserted at the beginning of each symbol and
the resulting signal is transmitted.

B. Channel Model

It is known that most wireless channels can be modeled as
discrete multipath channels with large delay spread and very
few significant paths as scatterers are sparsely distributed in
space (see Fig. 1). This makes the CIR sparse [19]–[21]. Thus,
for each transmit-receive link, we need only estimate a few
significant multipath channel gains, which has the potential to
reduce the pilot overhead substantially. We explicitly mention
the sparsity property as property 1.

Property 1: The channel impulse response is sparse.

Let hr ∈ CL denote the CIR which models the channel
between a typical single antenna user and the receive antenna
r = (m, g) where m ∈ {1, 2, . . . ,M} and g ∈ {1, 2, . . . , G}
as shown in Fig. 2. We assume that hr is sparse and is modeled
as [22]

hr = hrA � hrB , (3)

where � indicates element-by-element multiplication. The
vector hrA consists of elements that are drawn from some distri-

1Depending on the value of M and G, the antennas could have a linear
or a rectangular configuration. Further, we would like to stress that while
we confine our attention to rectangular configurations for convenience, our
approach applies to any one-, two- or three-dimensional configuration of
antennas as explained at the end of Sec. V.
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Fig. 1: In most wireless channels scatterers are sparsely dis-
tributed and the resulting channel impulse response is sparse.
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Fig. 2: 2-D antenna grid of size M × G. An arbitrarily se-
lected antenna is highlighted in red along with its neighboring
antennas in blue. In this context, the red antenna is the central
antenna r and rU , rR, rD, and rL are its 4-neighbors.

bution2 and hrB is a Bernoulli random vector with independent
entries that are distributed as [22]

P(hrB(i) = j) =

{
λi, for j = 1.

1− λi, for j = 0.
(4)

In other words, the entries of hrB form a collection of in-
dependent (and possibly non-identically distributed) Bernoulli
random variables. Thus, hr is an L-tap discrete-time sparse
channel, where no assumption whatsoever is made about the
distribution of its non-zero complex-valued coefficients.

The received signal at the rth antenna is best described in
the frequency domain and is given by

Yr = diag(X )Hr + Wr, (5)

where Yr is obtained from the time-domain received signal by
removing the cyclic prefix and pre-multiplying by the Fourier
matrix F. The noise Wr ∼ CN (0, σ2

wI) is the frequency-
domain noise vector of dimension N ×1 and Hr is the N ×1
channel frequency response vector i.e.,

Hr = F

[
hr

0N−L×1

]
= Fhr (6)

2We put no restriction on the distribution of hrA which could be Gaussian or
not. The distribution might even be unknown and the coefficients of hrA need
not be iid. The implementation in this paper is agnostic to the distribution of
channel coefficients.

where F is the truncated Fourier matrix of size N ×L formed
by selecting the first L columns of F. Using (6), we can rewrite
(5) as

Yr = diag(X )Fhr + Wr = Ahr + Wr, (7)

where A , diag(X )F is an N × L matrix.

C. Spatial Channel Model

The large number of antennas in massive MIMO can be
arranged in different configurations. For example, a) linear,
b) planar (rectangular), and c) cylindrical (circular). Our al-
gorithm is capable of working on any configuration as will
be explained later in the paper. However, for convenience, we
adopt the uniform rectangular array.

In massive MIMO it is reasonable to assume that antenna
elements in the same vicinity will observe almost same echoes
from different scatterers and therefore the corresponding chan-
nels will have common support. For the wireless system under
study, the signal bandwidth, operating frequencies and antenna
separation controls the supports commonality across the large
arrays. Specifically, the time difference of arrival ∆τ of a
wavefront to two antennas separated by a distance d satisfies
∆τ ≤ d

C , where C is the speed of light. The authors in
[23] suggest that two channel taps are resolvable if the time
difference of arrival is larger than 1

10BW where BW is the
signal bandwidth. Thus, let dmax be the distance between the
farthest antennas of an array (dmax is a function of the antenna
spacing d and the number of antennas in the array), then it
follows easily from the above that the antenna array might
exhibit one of the two possible scenarios:

1) The array is spatially invariant with respect to the CIR
support if dmax

C ≤ 1
10BW : Here, all hr’s will have same

sparsity pattern, which means the amplitudes of the channel
taps might be different but the positions of the most significant
taps (MST) will not change. This assumption is motivated
by the fact that for closely spaced antenna elements, the
times of arrival are quite close, though the paths amplitudes
and phases could be different. Therefore, different antenna
elements will experience almost the same echoes from the
different scatterers. In other words, the support of the channels
will not change as we move from one antenna to another
throughout the array but the tap strengths might be different as
evident from Fig. 3. We call such arrays space-invariant arrays
(SIA).

2) The array is spatially variant with respect to the CIR
support if dmax

C > 1
10BW : In this case, the channel support

varies across the array. Note that such variation takes place
slowly and, therefore, it is safe to assume that the following
property is always valid.

Property 2: Any central antenna and its 4-neighbors
have approximately common support.

See Fig. 4 for an example where the neighboring antennas
have approximately the same support. We call such arrays
space-variant arrays (SVA).
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Fig. 3: CIRs of a 5 × 5 section of a space-invariant antenna
array. Plots show the tap strengths on y-axis with respect to
the tap locations on x-axis for antennas in this space-invariant
antenna array section. Note that the support is invariant across
the array but the taps strengths fade differently across the array.
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Fig. 4: CIRs of a 5 × 5 section of a space-variant antenna
array. Plots show the tap strengths on y-axis with respect to
the tap locations on x-axis for antennas in this space-variant
antenna array section. Note that neighboring antennas have
approximately the same support.

In Table I we classify antenna arrays of three different
dimensions as either SIA or SVA. Specifically, the table
illustrates the relationship between the maximum resolvable
distance (dmax) and the dimensions of the arrays for three
different communications standards. For instance, in the 3GPP
LTE standard, the distance between two antenna elements on
the far ends of a 10× 10 array is 9d < dmax, thus the array is
SIA. Whereas, for a 50×50 array, the distance is 49d > dmax

causing the array to be SVA. Note that in this table the distance
between two adjacent antennas is assumed to be d = λ/2
where λ is the signal wavelength.

While most of the available research in MIMO channel
estimation deals with the space-invariant case (for example,
[11], [23]–[25]), very limited research has been conducted
for the space-variant scenario. Similarly, the literature related
to the estimation of space-variant sparse channels in massive
MIMO is limited (e.g., see [26] and the references therein).

The approach we pursue in this paper is capable of dealing
with both the space-variant and space-invariant cases.

D. Pilots
Pilots are needed for channel estimation where the transmit-

ter reserves K subcarriers for pilots and uses the remaining
N − K carriers for data transmission. Let P denote the set
of indices of pilot carriers. Using (7), the received pilots at
receive antenna r are then given by

Yr(P) = A(P)hr + Wr(P) (8)

where Yr(P) and Wr(P) are K × 1 vectors formed, respec-
tively, by selecting the K entries of Yr and Wr indexed by
P . Similarly, A(P) is a K×L matrix formed by selecting the
rows of A indexed by P . Solving (8) for hr obviously requires
that we at least have more pilots than the channel delay
spread (i.e., K ≥ L), which impacts the spectral efficiency
of the system. Here, however, we use the sparse nature of the
channel and the fact that adjacent antennas have almost the
same support (i.e., properties 1 and 2) to substantially reduce
the number of pilots needed as promised by the compressed
sensing theory [27], [28].

Several pilot placement schemes have been suggested for
OFDM channel estimation. It is best to allocate the pilots
uniformly in conventional OFDM channel estimation (which
does not make use of sparsity) [29]–[32]. However, when the
channel is sparse a random assignment of pilots has been
observed to be optimal [33], [34].

With this model, we are now ready to tackle the problem
of channel estimation. We do that in three steps spread over
three sections

1) Bayesian channel estimation at each antenna,
2) Distributed channel estimation, and
3) Data-aided channel estimation.

III. SPARSITY-AWARE DISTRIBUTION AGNOSTIC
BAYESIAN CHANNEL ESTIMATION

Consider the linear regression model presented in (8). For
notational convenience, we will drop the superscript r and
the symbol P unless these are required for clarity. Hence (8)
becomes

Y = Ah + W , (9)

where Y and W are vectors of dimension K×1, h is a vector
of dimension L × 1 and A is a matrix of dimension K × L.
Here we are interested in performing Bayesian estimation
of the wireless CIR h. Bayesian approaches assume a prior
distribution, however, given the dynamic nature of wireless
channels, it is usually impossible to characterize the distribu-
tion. Moreover, such an assumption is usually not suitable as
it does not reflect the reality and might result in performance
degradation. Additionally, even if the distribution is known, it
is very difficult to estimate the distribution parameters (e.g.,
mean and variance for Gaussian), especially when the channel
statistics are not i.i.d. In that respect, the use of distribution
agnostic Bayesian sparse signal recovery (SABMP) developed
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Standard Bandwidth (BW ) Center
frequency (fc)

dmax = C
10BW

d = λ
2

10× 10 array 50× 50 array 100× 100 array

CDMA2000 1.25 MHz 1 GHz 24 m 0.150 m SIA SIA SIA
3GPP LTE 20 MHz 2.6 GHz 1.5 m 0.058 m SIA SVA SVA

UWB 500 MHz 3 GHz 0.06 m 0.050 m SVA SVA SVA

TABLE I: Wireless Systems Parameters

by the authors in [17], [35] is quite attractive, as it provides
Bayesian estimates even when the prior is non-Gaussian or
unknown.

A. Simple Channel Estimation using SABMP
The set of channel estimation algorithms that we propose

in this paper (Sec. IV and V) use a modified version of
the SABMP algorithm proposed by the authors in [17], [35].
The modifications to SABMP required for the development of
our distributed and data-aided channel estimation methods are
proposed in Sec. III-B and III-C. However, before presenting
the modifications we consider it essential to quickly go through
the steps followed by the SABMP algorithm. In that respect, we
briefly describe a straightforward approach for sparse channel
estimation using SABMP. In this approach, all channels hr are
estimated independently using the SABMP algorithm. Since no
collaboration takes place among antennas in this approach, it is
not possible to take advantage of property 2 mentioned earlier.

To estimate the L × 1 sparse channel h, from the K × 1
observations vector Y related by the linear regression model
given in (9), SABMP pursues an MMSE estimate of h given
Y which is formally defined by

ĥMMSE , E[h|Y ] =
∑
S
p(S|Y)E[h|Y ,S]. (10)

Here the sum is executed over all possible 2L support sets of h.
However, computing this sum is a challenging task when the
channel delay spread (L) is large because the number of possi-
ble support sets can be extremely large and the computational
complexity will become unrealistic. To have a computationally
feasible solution, this sum can be approximated by considering
only those support sets which include the most significant taps
with high probability. These few support sets correspond to the
sets with significant posteriors p(S|Y). Let Sd be the set of
supports for which the posteriors are significant. Hence, (10)
can be approximated by3

ĥAMMSE =
∑
S∈Sd

p(S|Y)E[h|Y ,S]. (11)

We could determine Sd and ĥAMMSE in a greedy manner
using the dominant support selection metric defined as the log
posterior

ν(S) , ln p(S|Y) = ln p(Y |S)p(S). (12)

3Note that
∑

S∈Sd
p(S|y) < 1 since Sd ⊂ S. This would render the

estimate in (11) biased. To ensure an unbiased estimate, we normalize p(S|y)
so that

∑
S∈Sd

p(S|y) = 1.

The greedy algorithm of SABMP starts by first finding the
best support of size 1. This requires evaluating ν(S) for
S = {1}, . . . , {L}, i.e., a total of

(
L
1

)
search points. Let

S1 = {α1} be the optimal support. Now, the optimal support
of size 2 is found. Ideally, this involves a search over a
space of size

(
L
2

)
. To reduce the search space, however, the

greedy approach looks for the tap location α2 6= α1 such
that S2 = {α1, α2} maximizes ν(S2). This involves

(
L−1

1

)
search points (as opposed to the optimal search over

(
L
2

)
points). The process continues in this manner by forming
S3 = {α1, α2, α3} and so on. Therefore, Sd, the set of
dominant support sets is composed of support sets that are
incremental in nature and is given by4

Sd = {S1,S2, . . . ,STmax
} ,

Sd = {{α1}, {α1, α2}, . . . , {α1, α2, . . . , αTmax}} . (13)

The development of the SABMP algorithm assumes that the
taps of h are activated with equal probability λ (i.e., i.i.d.
Bernoulli with probability λ). However, here we consider the
case where some taps are more probable than others (based on
the available information), and hence it is desirable to assign
those taps a higher probability. This requires us to assume an
independent and non-identically distributed Bernoulli behavior
for the unknown h and therefore the prior is given by

p(S) =
∏
i∈S

λi
∏

j∈{1,...,L}\S
(1− λj), (14)

where, λi is the probability that the ith tap of h is active.
Moreover, the likelihood is approximated as

p(Y |S) = exp

(
− 1

2σ2
w

∥∥P⊥SY∥∥2

2

)
, (15)

where, P⊥S = I − PS = I − AS
(
AH
SAS

)−1
AH
S is the

projection matrix and AS is a matrix formed by selecting
columns of A indexed by support S. Substituting (14) and
(15) in (12) yields

ν(S) , ln p(S|Y) = (− 1

2σ2
w

)
∥∥P⊥SY∥∥2

2
+
∑
i∈S

lnλi

+
∑

j∈{1,··· ,L}\S
ln(1− λj) (16)

4In (13), Tmax refers to the maximum number of non-zero elements in the
sparse h. Tmax is selected to be slightly larger than the expected number of
active taps in the estimated CIR using the de Moivre-Laplace theorem. For
details, readers are referred to [17].
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1: procedure GREEDY(A,Y ,λ, σ2
w, Tmax)

2: initialize J ← {1, 2, . . . , L}, i← 1
3: initialize empty sets Smax, Sd, p(Sd|Y), E[h|Y ,Sd]
4: Ji ← J
5: while i ≤ Tmax do
6: Ω ← {Smax ∪ {α1},Smax ∪ {α2}, · · · ,Smax ∪
{α|Ji|} | αk ∈ Ji}

7: compute {ν(Sk) | Sk ∈ Ω}
8: find S? ∈ Ω such that ν(S?) ≥ maxj ν(Sj)
9: Sd ← {Sd,S?}

10: compute p(S?|Y),E[h|Y ,S?]
11: p(Sd|Y)← {p(Sd|Y), p(S?|Y)}
12: E[h|Y ,Sd]← {E[h|Y ,Sd],E[h|Y ,S?}
13: Smax ← S?
14: Ji+1 ← L \ S?
15: i← i+ 1
16: end while
17: return Sd, p(Sd|Y),E[h|Y ,Sd]
18: end procedure

TABLE II: Support Agnostic Bayesian Matching Pursuit Al-
gorithm (SABMP)

Now the only term that is left to be evaluated in (11) is
E[h|Y ,S]. Note that it is difficult or even impossible to
evaluate this quantity because the distribution of the active
taps of h is unknown. Therefore, we replace it by the best
linear unbiased (BLUE) estimate given by

E[h|Y ,S]←
(
AH
SAS

)−1
AH
SY . (17)

This provides us all the required quantities to evaluate
ĥAMMSE. Note that all parameters including σ2

w,λ = {λi}Li=1
and the possible size of support Tmax need not be known and
are estimated by the algorithm. Specifically, λi’s are initialized
as

λi =
1

L

∣∣∣∣{j :
∣∣aHj Y∣∣ ≥ 1

2

∥∥aHY∥∥∞}∣∣∣∣ ,
where aj is the jth column of the matrix A. Moreover, σ2

w
is initialized simply as a scaled version of the variance of
the received signal i.e., σ2

Y . Finally, Tmax is selected to be
slightly larger than the expected number of active taps in the
estimated CIR using the de Moivre-Laplace theorem. Note that
our algorithm is robust to these initial estimates and can find
right support even if these parameters are initialized away from
their true values. For more details the interested readers are
referred to [17].

By following this greedy approach, each antenna node
estimates the corresponding approximate sparse CIR (11) in
a distribution agnostic manner. A detailed statement of the
greedy algorithm is presented in Table II.

In addition to the non-iid generalization above, we develop
in the following two necessary modifications to the SABMP
algorithm. Specifically, we modify SABMP to output a) the
channel estimation error covariance matrix and b) the marginal
probabilities of the detected MSTs that are needed for the

distributed and data-aided versions of the channel estimation
algorithms proposed in Sec. IV and V respectively.

B. Error Covariance and Estimation Error
The channel estimation error and the covariance could be

computed as follows.
Let,

h̃ = ĥAMMSE − h (18)

be the error vector and Rh̃ , cov[h̃|Y ] represent the error
covariance matrix. The trace of Rh̃ i.e., Tr[Rh̃] gives the
MMSE estimation error. In order to evaluate Rh̃, let us define
the error vector h̃S = ĥS − h for a given support S, where
ĥS = E[h|Y ,S]. Let the corresponding error covariance
matrix be Rh̃|S , cov[h̃|Y ,S]. Then Rh̃ could be expressed
in terms of Rh̃|S by summing it over the dominant support
set Sd and is given by

Rh̃ =
∑
S∈Sd

p(S|Y) Rh̃|S . (19)

Since we replace E[h|Y ,S] with a BLUE estimate, the condi-
tional error covariance matrix will be Rh̃|S = (AH

SC
−1AS)−1

[36] (where C = σ2
wI is the noise covariance matrix).

Combining this fact with (19) yields

Rh̃ = σ2
w

∑
S∈Sd

p(S|Y) (AH
SAS)−1. (20)

Note that the calculation of covariance matrix involves a matrix
inversion term which is a computationally expensive task.
However, we would like to highlight that these inverses are
available as part of intermediate calculations in the SABMP
algorithm and hence do not pose any additional computational
burden. The error covariance matrix and the estimation error
play a vital role in the development of the data-aided approach
presented in Sec. V.

C. Finding Marginals
The marginal probabilities are not directly available at the

output of SABMP and could be computed from the posteriors
p(S|Y),∀S ∈ Sd in a simple manner described below.

Let T r = {αr1, αr2, . . . , αrTmax
} be the set of MST locations

of channel hr as detected by SABMP algorithm. Then the
marginal probabilities of αri , ∀i ∈ {1, 2, . . . , Tmax} could be
computed as

p(αri |Y) =
∑

αr
i∩S6=∅

p(S|Y), (21)

where the sum is evaluated over all S ∈ SrL satisfying the
condition αri ∩ S 6= ∅ where SrL contains all 2L − 1 support
sets that could be created for hr (recall that hr is a vector
of length L). Among these 2L − 1 support sets there are
only 2Tmax − 1 support sets which involve purely the Tmax

detected non-zero locations. Let us denote the set of these
2Tmax−1 support sets by SrTmax

. We assert that only the support
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Srd SrTmax

1 {α1} {α1}
2 {α1, α2} {α2}
3 {α1, α2, α3} {α3}
4 {α1, α2}
5 {α1, α3}
6 {α2, α3}
7 {α1, α2, α3}

TABLE III: Sets Srd and SrTmax
for Tmax = 3.

sets present in SrTmax
have significant posteriors p(S|Y) as

compared to the others which have very small values. This
follows from the findings of [17] (see Fig. 7 therein). Thus,
we can evaluate the sum in (21) over S ∈ SrTmax

to find
the marginal probability of each detected non-zero location.
However, the SABMP algorithm returns Srd , which unlike SrTmax

contains only Tmax support sets (see (13)). Therefore, we
modify the SABMP algorithm so that it outputs p(S|Y) for all
supports in SrTmax

. For illustration purpose Table III provides
an example of the support sets Srd and SrTmax

when Tmax = 3.
Please note that for convenience of notation, we shall from
now on use λ(αri ) as a shorthand notation for p(αri |Y).

Since SrTmax
has more support sets, this modification

obviously results in increased computational complexity.
However, utilizing the available intermediate information in
SABMP helps to compute the marginalized posterior prob-
abilities p(S|Y) in an efficient manner. Specifically, note
that for the example of Table III, we require posteriors of
{α2}, {α3}, {α1, α3}, and {α2, α3} in addition to those re-
turned by SABMP. However, it follows from the explanation
given in Sec. III-A, that the posteriors for {α2}, {α3}, and
{α1, α3} are already available to the algorithm by virtue of
the intermediate computations. Therefore, the only missing
computation which has to be performed additionally is that
of {α2, α3}. The same reasoning applies for larger support
sizes. Therefore, we state that the increase in computational
complexity is not significant.

For ease of reference, we name the modified version of
SABMP as RS1. It has the following additional features:
• it considers the non-zero taps to follow independent and

non-identically distributed Bernoulli behavior (as high-
lighted in Sec. III-A)

• it returns the error covariance of our estimate which is
needed for the data-aided part (Sec. III-B)

• it outputs the belief/probability that a given tap is active
(Sec. III-C).

This algorithm along with SABMP will be used in the discus-
sion that follows to develop the coordinated channel recovery
algorithms.

IV. COORDINATED CHANNEL ESTIMATION

In the coordinated channel recovery method, the receive
antennas collaborate with each other to take advantage of
property 2 and estimate the MST locations jointly. In order

to realize this coordinated method, we assume baseband pro-
cessing at each receive antenna with an additional processor
on each baseband card to implement the collaboration strategy
described in this section. At the heart of the collaboration
strategy followed by the proposed method is the following
simple information-sharing step.

Sharing Step: Each antenna acting as a central
antenna rC receives information from its direct

4-neighbors N = {rU , rD, rR, rL}.5

It is obvious that repetitive application of this sharing step
would result in information diffusion throughout the antenna
grid. For example, in the first iteration rC receives information
from just the first tier of antennas (i.e., the neighboring 4
antennas). In just two iterations rC receives information from
12 antennas (i.e., the first and second antenna tiers) in its
neighborhood and in three iterations it receives information
from 24 neighboring antennas (see Fig. 5d). Therefore, with
the help of this simple step each antenna is able to incorporate
information from its neighbors to enhance its decision about
the MSTs of its channel. This ultimately helps in estimating the
channels accurately. There are two advantages of this stepwise
collaboration mechanism:

1) It gives us the flexibility to control the number of collab-
orators for each receiver which is essential for the space-
variant case (Sec. II-C2).

2) The collaboration mechanism is computationally efficient
as the antennas do not all collaborate with each other
at the same time. This also reduces the communication
overhead.

We now present two algorithms for channel estimation based
on this simple stepwise information sharing strategy.

A. Algorithm 1: Marginal-based Channel Estimation using
Pilots

We seek to solve the problem mentioned in (8). The pro-
posed algorithm starts by estimating the sparse channels hr at
each receive antenna r using the RS1 algorithm. We initialize
the algorithm by assuming that all taps of hr have equal active
probability λinit, i.e.,

P (hrB(l) = 1) = λinit, l ∈ {1, 2, · · · , L} ,∀r. (22)

Let T r = {αr1, αr2, · · · , αrTmax
} be the set of MSTs of channel

hr as detected by RS1. Here αri is the location of the ith
detected tap of receiver r. Note that since λinit is same
throughout the array, the number of detected MSTs, i.e., Tmax,
will also be same for all receivers in the array.6 In other words,
the cardinality |T r| = Tmax,∀r. However, the actual tap
locations might differ from one antenna to another. Therefore,

5For the elements lying at the edges of the array the number of neighbors
are different. We use N to denote the set of neighbors irrespective of the
position of r and therefore 2 ≤ |N| ≤ 4.

6The value of Tmax is selected to be slightly larger than the expected
number of active MSTs in the estimated CIR using the de Moivre-Laplace
theorem which relies on λinit.
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it is not necessary that |T r1 ∩ T r2 | = Tmax, for r1 6= r2.
Along with the MSTs, RS1 also returns the marginals λ(αrt ) ,
P (hrB(αrt ) = 1) , t ∈ {1, 2, · · · , Tmax}. At this point, we
invoke the sharing step mentioned previously and share the
marginals. Hence, each antenna, acting as central antenna rC ,
collects these marginals from its 4-neighbors and computes the
average marginal for each tap given by

λ(αrCi ) =


∑

j∈N+

λ(αji )
/
|N+|, if αrCi ∈

⋃
j∈N+

T j

λsmall, otherwise
, (23)

where N+ = N ∪ rC , i ∈ {1, 2, · · · , L} and λ(αrCi ) can
be seen as the updated marginal of the ith tap detected at rC .
Here, λsmall is an arbitrarily small value assigned to those taps
which have not been detected by any of the receivers in N+;
it is highly probable that these taps have almost zero gains.
Note that (23) is performed at each antenna as each antenna is
the center of some neighbors. Moreover, each antenna repeats
these sharing and averaging steps D times where D is selected
based on whether the array under consideration is classified as
SIA or SVA. This repetition allows each antenna to utilize
the observations of distant antenna tiers to bolster its support
estimates. Note that when D = 1, information from only the
immediate neighbors is taken into consideration and for D =
2, information belonging to the neighbors of neighbors is also
incorporated in the computations. Therefore, in this fashion,
higher values of D make it possible to extend the scope of
information sharing to distant antennas.

In the space-invariant array case, since the MST locations do
not vary across the array, contribution from as many antennas
as possible will always strengthen our belief in these locations.
Therefore, we may select D = max(M,G) which equals to the
largest dimension of the antenna array. This particular choice
of D ensures that each antenna receives information from every
other antenna in the array. However, one might not need to
select such high value of D and a smaller number of iterations
might be sufficient based on the problem parameters such as
the observation size (K) and the sparsity (n) of the channels.
In fact we could establish a loose lower bound on D in the
noise free case as a function of these quantities using lemma
1 in [37]. According to this lemma, if observations from q
antennas are used to recover n-sparse channel vectors using
K pilots then for a unique solution the following relationship
holds

n ≤ d(K + q)/2e − 1, (24)

where d·e denotes the ceiling operation. This yields the lower
bound on q which is given by

q > 2n−K. (25)

Furthermore, it could be easily deduced that the total number
of antennas that take part in the Dth sharing and averaging
step is 2D(D+1)+1. Thus relating this number with q above
we conclude that, to guarantee a unique solution in the noise
free case, D must satisfy

2D(D + 1) + 1 > 2n−K, (26)

which simplifies to

D >

√
n− K

2
− 1

4
− 1

2
. (27)

For a detailed account of the lemma and its requirements please
refer to [37].

In the space-variant case, depending upon how fast the MST
locations (support) change across the array, we might or might
not gain from sharing. Specifically, if the change in support is
fast, using higher values of D would degrade the estimates. On
the other hand, if the support changes very slowly, we expect
that the neighborhood around a given antenna would behave
approximately as SIA. Therefore, we select a value for D such
that collaboration among antennas in that neighborhood would
improve the estimates. In fact, from the discussion in Sec. II-C,
we can determine the value of D which will ensure that all
sharing and averaging takes place among antennas having same
support. Specifically, the number of tiers (also D) selected for
sharing could be represented in terms of the distance between
two adjacent antennas d and the signal bandwidth BW . Note
that the distance between the farthest antennas in tier 1 (i.e.,
when D = 1) is 2d. Similarly, for tier 2 this distance is 4d. In
general, the distance is directly related to D and is given by
2Dd. Now to ensure space-invariance for antennas up to tier
D, it follows that we should require 2Dd ≤ C

10BW (see Sec.
II-C). Therefore,

D ≤ C

20 · d ·BW ,

or

D =

⌊
C

20 · d ·BW

⌋
, (28)

where b·c denotes the floor operation. The value of D in
(28) will ensure that sharing happens among antennas whose
support is approximately the same. That said the number of
pilots should also be large enough such that (27) is also
satisfied.

At the end of D iterations each antenna has a new set of
marginals which are used as new priors with SABMP to get the
final sparse CIR estimate. This final estimate is more accurate
as the antennas have shared their information to strengthen
their beliefs about the locations of the active taps. We call
this algorithm the Marginal-based Algorithm. A graphical
description of the algorithm is given in Fig. 5 and a summary of
the steps followed by the algorithm is presented in Algorithm
1.

B. Algorithm 2: Reduced Communication and Computational
Cost – Integer-based Channel Estimation

We would like to point out that sharing the marginals
vectors among the receiver antennas puts a high communica-
tion overhead on the massive-MIMO system. This is because
the marginals are floating point numbers and communicating
these numbers requires complex signalling. This increases the
communication overhead between antennas. However, if just
integers are shared, the communication cost could be reduced
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(a) Step 1: Each antenna finds MSTs and
their corresponding marginals λ.
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(b) Step 2: Each antenna receives marginals
from its 4-neighbors (highlighted red).
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(c) Step 3: Each antenna computes the
mean of the received marginals λ′.

rU

rC rR

rD

rL

rI rJ

rP rQ

rA rB rE rF rG

rH rK

rM rN

rO rS

rT rV rW rX rY

λ′Hλ′A λ′Iλ′B λ′Uλ′E λ′Jλ′F λ′Kλ′G

λ′Mλ′H λ′Lλ′I λ′Cλ′U λ′Rλ′J λ′Nλ′K

λ′Oλ′M λ′Pλ′L λ′Dλ′C λ′Qλ′R λ′Sλ′N

λ′Tλ′O λ′Vλ′P λ′Wλ′D λ′Xλ′Q λ′Yλ′S

λ′A

λ′B

λ′B

λ′E

λ′E

λ′F

λ′F

λ′G

λ′H

λ′I

λ′I

λ′U

λ′U

λ′J

λ′J

λ′K

λ′M

λ′L

λ′L

λ′C

λ′C

λ′R

λ′R

λ′N

λ′O

λ′P

λ′P

λ′D

λ′D

λ′Q

λ′Q

λ′S

λ′T

λ′V

λ′V

λ′W

λ′W

λ′X

λ′X

λ′Y

(d) Step 4: Repeat steps 2 & 3. Information
from green antennas comes in.

Fig. 5: Description of the steps followed by Algorithm 1 when D = 2. Although these steps are followed by all antennas in
parallel, the process is highlighted only for the blue antenna.

Algorithm 1 Marginal-based Channel Estimation using Pilots

1) Initialize P (hrB(l) = 1) = λinit, l ∈ {1, 2, · · · , L} ,∀r.
2) Run RS1 at each antenna to estimate its λ. (Fig. 5a)
3) Each antenna, acting as central antenna, receives

marginals from its neighbors. (Fig. 5b)
4) Each antenna computes average marginals (λ′). (see (23)

and Fig. 5c)
5) Repeat steps 3-4 above, D times. (Fig. 5d)
6) All antennas re-estimate channels using these marginals

as new priors with SABMP algorithm.

significantly. We therefore, propose a variant of Algorithm 1
which uses integers for communication among receiver anten-
nas. Since we are not interested in sharing marginals, we do
not calculate these and rely on the original SABMP algorithm.
Therefore, this algorithm has an additional advantage of low

computational complexity as marginals are not calculated.

The algorithm starts by estimating channels at each receiver
using SABMP and depends completely on the amplitudes of
the estimated MSTs. Following the same reasoning given
in the previous section, let T r = {αr1, αr2, · · · , αrTmax

} be
the set of MSTs of channel hr as detected by SABMP and
hr(T r) be the corresponding amplitudes. Based on these
amplitudes, we define an integer metric for each tap which
we call score and denote it by ψ. For a given T r, the highest
score is assigned to the channel tap with maximum amplitude
in absolute sense. Similarly, the tap (in T r) with minimum
amplitude gets the least score. Specifically, since there are
Tmax MSTs, we assign a score of Tmax to the channel tap
with maximum amplitude, a score of Tmax − 1 to the second
highest tap and so on until a score of 1 is assigned to
the tap with the smallest amplitude among these Tmax taps.
Therefore, if |hr(αr1)| > |hr(αr2)| > · · · > |hr(αrTmax

)| then
ψ(αr1) = Tmax, ψ(αr2) = Tmax − 1, · · · , ψ(αrTmax

) = 1 where
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Algorithm 2 Integer-based Channel Estimation using Pilots

1) Run SABMP at each antenna
2) Each antenna receives scores from its neighbors
3) Each antenna computes average scores (29)
4) Repeat steps 2-3 above, D times
5) Each antenna computes a belief vector (30)
6) All antennas re-estimate channels using these belief vec-

tors in place of Bernoulli priors with SABMP algorithm

ψ(αri ) is the score of the ith detected tap of receiver r. All
other L− Tmax tap locations are assigned a score of zero.

Once each receiver has assigned scores to its detected MSTs,
we are ready to invoke the sharing step. Thus, each antenna
acting as a central antenna rC collects these scores from its
4-neighbors and computes the average score for each tap given
by

ψ(αrCi ) =


⌈ ∑
j∈N+

ψ(αji )
/
|N+|

⌉
, if αi ∈

⋃
j∈N+

T j

0, otherwise
(29)

where i ∈ {1, 2, · · · , L}. The sharing and averaging process
is repeated D times and all the related discussion in marginal-
based algorithm applies to this algorithm as well. The averag-
ing step of (29) is similar to the averaging step of Algorithm
1 given in (23) except that we round up the averaging result
to the nearest largest integer. This ensures that the resulting
score is always an integer. However, note that the rounding
operation is not required in the last step as no sharing takes
place after that. Therefore, to avoid unnecessary computation
and the resulting information loss, the round up operation is not
performed on the average scores. At the end of the D sharing
and averaging steps each node computes a belief metric given
by

b(αri ) = ψ(αri )/Tmax, (30)

where b(αri ) is the estimated belief that the ith tap of receiver
r is active. Each node uses the beliefs as the Bernoulli priors
to re-estimate the channels using RS1. We call this algorithm
the Integer-based Algorithm. The steps followed by this algo-
rithm are summarized in Algorithm 2. This algorithm has the
following advantages over the marginal-based algorithm:

1) Reduced communication cost since it totally avoids com-
municating floating point numbers and,

2) Lower computational complexity since it does not com-
pute marginal probabilities.

We now move on to suggest another level of refinement for
the marginal probability/scores vectors by selecting reliable
data carriers to perform channel estimation.

V. DATA-AIDED CHANNEL ESTIMATION

By virtue of the channel sparsity property we can perform
channel estimation using a small number of pilots K compared
to the channel length L as discussed in the last two sections.

We can enhance the channel estimate by increasing the number
of pilots. Alternatively, we take a data-aided approach as
it is more spectrally efficient. Here, the pilot-based channel
estimate is used for data detection which along with the pilots
is used to enhance the channel estimate further. Note however
that we do not need to use all the detected data for channel
estimation thanks to the channel sparsity; a few additional
observations would enhance the channel estimate significantly.
Therefore, we can be selective and use only the samples which
are reliable. So each antenna could independently determine
which carrier is reliable by assigning a reliability measure
R(i), i ∈ {1, · · · , N}\P to each of the N − |P| data
carriers. That said, we recognize that there are two sources of
error in data detection that play important role in determining
the reliable data carriers, namely, a) noise, and b) error in
channel estimation. Their combined distortion effect could be
expressed by substituting the estimated channel ĥAMMSE from
(18) into the system model (9) as follows

Y = A(h + h̃) + W = Ah + Z,

where, Z = Ah̃ + W is the combined distortion which is
assumed to be Gaussian with zero mean and covariance RZ ,
where RZ is represented in terms of the error covariance Rh̃,
calculated in (20), as

RZ = E[ZZH] = E[(Ah̃ + W)(Ah̃ + W)H]

= E[Ah̃h̃HAH + WWH] = ARh̃A
H + σ2

wI. (31)

Here we have assumed that noise W and error h̃ are uncor-
related. Note that Z includes the effect of both the channel
estimation error and the noise and plays the central role in
the calculation of reliability measure. Specifically, we use
the reliability criterion proposed in [38] which takes into
consideration the fact that for some carrier i, the distortion
Z(i) might be strong enough to take the estimated data symbol
X̂ (i) out of its correct decision region, while for some other
carriers the distortion is not strong enough and the data is
decoded correctly. All those data carriers i which satisfy this
condition 〈X̂ (i)〉 = X (i), where 〈·〉 represents rounding to the
nearest constellation point, are termed reliable carriers and the
following metric is used to compute the reliability of carrier i

R(i) =
p(Z(i) = X (i)− 〈X̂ (i)〉)∑Q−1

k=0,Ak 6=〈X̂ (i)〉 p(Z(i) = X (i)−Ak)
(32)

where p(·) represents the pdf of Z . The numerator in (32) is
the probability that Z(i) does not take X (i) beyond its correct
decision region and the denominator sums the probabilities of
all possible incorrect decisions that Z(i) can cause (i.e., Z(i)
takes 〈X̂ (i)〉 to a QAM constellation point Ak different from
X (i)). The idea of reliability calculation is shown graphically
in Fig. 6. In this figure, although both X̂ (1) and X̂ (2) are
equiprobable to be decoded as X (numerator of (32) will
have same value), X̂ (2) is less likely to be decoded as any
other constellation point (denominator of (32) for X̂ (2) will
be smaller) and thus more reliable. Thus, it is obvious that the
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Algorithm 3 Channel Estimation using Pilots + Reliable
Carriers

1) Run Algorithm 1 or 2 to get CIR estimates
2) Each antenna r uses its estimated channel to find top U

reliable carriers Rr and sends Rr to its central antenna
3) Each antenna finds the intersection of received reliable

carriers R =
⋂
r∈N+ Rr and sends it back to its neigh-

bors
4) Each antenna sends back data corresponding to R to its

central antenna
5) Each antenna further refines the reliable carriers by se-

lecting only those with same data. Call this list R?.
6) Each antenna uses the carriers R? and the pilots to

perform SABMP recovery

higher the value of R the higher the probability of staying in
correct decision region and hence the higher the reliability
of the carrier. Note that our reliability calculations of (32)
require the error covariance which is already available at the
output of the RS1 algorithm as mentioned in Sec. III-B.
Here we would like to point out that the general approach
of using reliable data carriers for enhanced channel estimation
is not new and techniques employing reliable carriers exist
[39]–[41]. Specifically, the reliability measure R in (32) is
similar to log-likelihood ratios (LLR’s) commonly used in joint
channel estimation and data detection methods similar to turbo-
equalizers (for example, see [42] and the references therein).

×××

×××

×××

×××X (c) X (b)

X (a) XX̂ (1)

X̂ (2)

Fig. 6: Geometrical representation of the reliability measure-
ment. X̂ (2) is more reliable than X̂ (1) as it is less probable
to be confused with other constellation points.

Using (32) each antenna determines the reliability of all data
carriers and then select the U carriers with highest reliability
values. Let Rr denote the index set of these U reliable
carriers for antenna r. One possible approach could be that
each receiver uses these reliable carriers to enhance the CIR
estimate by using Algorithm 1 or 2. However, the antennas can
collaborate to enhance the reliability even further. First, each
antenna rC acting as a central antenna collects the indices
of the reliable carriers from its 4-neighbors and returns the
indices of the reliable carriers common to all antennas, i.e.,

R =
⋂
r∈N+ Rr. The central antenna can go one step further

and ask its neighbors to share their equalized data on the
common carriers. The central antenna in turn prunes the set
R further and only retains those carriers R? on which there is
agreement among the neighbors on the value of the transmitted
data. The central antenna can now use the enlarged set of pilots
plus reliable carriers P ∪R? to revisit the channel estimation
problem starting from the system of equations

Yr(P ∪R?) = A(P ∪R?)hr + Wr(P ∪R?) (33)

and estimate channel hr. The resulting algorithm is presented
in Algorithm 3.

At this stage we would like to point out that implementation
of all three algorithms is independent of the antenna array
configuration. This is due to the fact that each antenna only
deals with its direct neighbors. Therefore, as far as the antennas
have the knowledge of their neighbors these algorithms can be
implemented on any one-, two-, or three- dimensional arrays
with arbitrary topology. Furthermore, the development of algo-
rithms assumed single-antenna UE’s; however, the techniques
could be easily extended to multiple-antenna UE’s such as the
LTE UE’s which are often equipped with two or four closely
located antennas. Since the antennas are closely located,
their channels will exhibit the approximately common support
property. Therefore, the algorithms explained above could be
used to exploit correlation among the channel tap locations to
further improve the channel estimates. The only difference is
that the effective number of collaborating antennas in each tier
will scale with the number of antennas on UE. For example,
if there are two transmit antennas on a UE, the number of
collaborating antennas in each tier will double.

VI. SIMULATION RESULTS

A. System Setup
In this section we will present extensive simulation results

to demonstrate the performance of our proposed channel esti-
mation algorithms. Specifically, we consider a MIMO-OFDM
system with the simulation parameters given in Table IV. For

Parameters Value
Uniform Rectangular Array (M ×G) 20× 20
Number of carriers (N) 512
Number of pilots (K) 8, 16
QAM modulation order (Q) 4, 16
Channel length (L) 32, 64
Channel sparsity (n) ≈ 3, 5, 7
Collaboration parameter (D) 3

TABLE IV: System Parameters for simulation

simulations, sparse Rayleigh channels are generated where the
channel statistics are assumed to be unknown at the receivers.
For space-invariant arrays the active tap locations remain fixed
across the array. However, for the space-variant case the active
tap locations vary slowly across the array. Specifically, we
use the IlmProp channel modeling tool [43], [44] for channel
generation. Here it is important to note that there is a general
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lack of channel models for massive MIMO scenarios and
currently IlmProp seems to be one of the best options available
to the research community for channel generation. We use
IlmProp to generate channels by placing point-like scatterers
and the transmitter randomly in the environment and make sure
that the line-of-sight is obstructed. Moreover, the number of
scatterers is set according to the desired sparsity i.e., n. Since
the resulting CIR contains many small non-zero components
along with the dominant ones, we discard the small ones and
keep just the top n components. Further, the center frequency
and signal bandwidth are chosen to be 2.6 GHz and 20 MHz
respectively as specified in the 3GPP-LTE standard. Moreover,
to generate the SIA and SVA behavior the distance between
antennas was adjusted accordingly.

B. Methods for Performance Comparisons
The channel vectors hr are estimated using a) least-squares

method with known true MST locations (oracle-LS), b) block-
sparse recovery method (BR), c) proposed Marginal-based
channel estimation using pilots (MB-P), d) proposed Integer-
based channel estimation using pilots (IB-P), and e) proposed
Marginal- or Integer-based channel estimation using pilots and
reliable carriers (MB-R / IB-R),

The first two methods are used to benchmark the perfor-
mance of our algorithm. Oracle-LS knows the channel support
at each antenna and hence the only burden is tap estimation
using the available pilots. The block sparse recovery method
(BR) works in the space-invariant case and uses the fact that
the channel support is the same across the array. It casts the
problem as several block sparse problems where each receiver
collects all observations from its neighbors to estimate the
channels. We use the block sparse Bayesian learning algorithm
(BSBL) proposed in [45] for block sparse vector estimation as
it has been shown to be superior to other methods.

C. Evaluation Criteria
To evaluate channel estimation performance we use:

1) Normalized mean-squared error (NMSE) between true
and estimated channel vectors.

NMSE = 10 log10

 1

Θ

Θ∑
θ=1

∥∥∥ĥθ − hθ

∥∥∥2

‖hθ‖2

 , (34)

where Θ is the number of trials. hθ and ĥθ are the original
and estimated CIR at the θth iteration respectively.

2) Bit-error-rate (BER) between the transmitted data and the
recovered data at receivers using the estimated channels.
We use zero-forcing equalization to recover the data
passed through the channels.
In all of the experiments we average the NMSE and BER
over Θ = 100 trials.

D. Experiments
1) Experiment 1 - How many pilots?: In this experiment,

we are interested in finding the required number of pilots for

successful recovery of channels of length L = 64. The graphs
in Fig. 7 show the channel recovery success rate vs varying
number of pilots for both SIA and SVA. Note that both pilot-
based and data-aided versions of MB and IB algorithms were
simulated. Here, success rate is defined as the ratio of the
number of successful trials to the number of total trials, where
a trial was considered successful when the NMSE was better
than −10 dB. The SNR was fixed at 10 dB and the number
of pilots K was varied from 2 to 42 while Θ = 100 trials
were conducted for each value of K. Channel sparsity was
assumed to be n = 3 and QAM signals of order Q = 4 were
passed through the channels. It is evident from the graphs that
for SIA just 6 pilots are needed by both MB-R and IB-R to
achieve a success rate > 50% and only 12 pilots to achieve
a 100% success rate. This is a small fraction of the channel
length L = 64 (i.e., 9.37% and 18.75% respectively).

2) Experiment 2 - Comparison between MB and IB: In
this experiment, we compare the performance of the proposed
MB and IB channel estimation algorithms. Channels of length
L = 64 and sparsity n = 3 were estimated using K = 16
pilots. The top row of Fig. 8 shows the NMSE in estimated
CIRs while the bottom row shows the BER of the recovered
data using these CIR estimates. Moreover, as apparent from the
labels, this experiment was run using three different choices
of parameters, namely, (Q = 4, SIA), (Q = 4, SVA), and
(Q = 16, SIA) respectively. The figure shows that incorporat-
ing reliable carriers results in significant performance gains.
The figure also shows that the algorithms perform equally well
for both SIA and SVA configurations and, hence are robust to
how accurate property 2 is.

An important observation is that there is little advantage of
MB algorithms over IB algorithms in this setting. However
in some scenarios the improvement could be better as it uses
more (and accurate) information to estimate the channels. For
example, the difference between the performance of MB and
IB algorithms is more evident when the number of pilots is
further reduced, as could be seen in the success rate curves of
Fig. 7. Also note that the gain of MB algorithms is much more
noticeable for their pilot-based versions. However, this advan-
tage is at the expense of a relatively high computational and
communication cost as depicted in Table V which compares
the runtime for the two algorithms.

Algorithm Run time (sec)
MB-P 0.3897
IB-P 0.3095

TABLE V: Run time comparison of the MB-P and IB-P.

3) Experiment 3 - Comparison with BR and oracle-LS al-
gorithms: In this experiment, we benchmark the performance
of the proposed algorithms against BR and oracle-LS. Here
we use QAM signals of order Q = 4 and Q = 16 and pass
them through a channel of length L = 32 and sparsity n = 3.
We use K = 8 pilots and confine our attention to the space-
invariant case as this is an essential requirement for block
sparsity algorithm to work.
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Fig. 7: Experiment 1: How many pilots are needed to successfully recover the CIR?
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Fig. 9: Experiment 3: Performance comparison between the proposed and the BR and oracle-LS algorithms.

It is obvious from the graphs of Fig. 9 that the proposed MB-
R algorithm has the best performance among all algorithms.
The gain in the performance of the proposed algorithm over
others is more prominent for higher values of SNR. Specifi-
cally, note that there is a difference of nearly two orders of
magnitude in the BER of MB-R and BR when SNR = 35 dB
and Q = 4.

4) Experiment 4 - Effect of sparsity rate: In this experiment,
we study the performance of the proposed algorithms under
different sparsity rates. Channels of length L = 64 were
generated having n = 3, 5 and 7 non-zero taps corresponding
to sparsity rate of 4.7% − 11%. In this experiment, QAM
signals of order Q = 4 were passed through the channels and
K = 16 number of pilots were used. Fig. 10 shows the NMSE
performance of the proposed IB-R algorithm. It is evident from

the graphs that the performance of the proposed algorithm
degrades gracefully as CIR gets denser. A similar performance
is achieved for the MB-R algorithm. The degradation in
reconstruction accuracy with increased number of non-zeros
is a common trend in all sparse recovery algorithms.

5) Experiment 5 - Effect of D: In this experiment, we
study the effect of the number of collaborating antennas on
channel estimation for both the SIA and SVA cases. In this
experiment we compute the BER in the recovered data for
various values of SNR and parameter D. Fig. 11 and 12
show the BER vs SNR graphs for SIA and SVA respectively.
Specifically, we plot for D = 1, 2, 3, 4 and 5. Note that when
D = 1, information from only the direct 4 neighbors is
taken into consideration and for D = 2 information belonging
to the neighbors of neighbors is also incorporated in the
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Fig. 10: Experiment 4: Effect of channel sparsity on its
recovery.

computations.
In the SIA case (Fig. 11) QAM signals of order Q = 4

were passed through channels of length L = 32 and sparsity
n = 3 and the corresponding CIRs were estimated using
IB-P with the help of K = 8 pilots. Fig. 11 shows that
sharing improves the BER performance. Specifically, as we
increase the scope of sharing from the first tier of neighbors
(D = 1) to the fifth tier (D = 5), we observe a drop in
BER. However, the improvement in BER is not significant
beyond D = 3. This behavior is dependent on several factors
such as the length of channel (L) to be estimated, number of
pilots (K) and the channel sparsity (n). For instance, in this
example, if the number of pilots is reduced (i.e., K < 8)
the estimated CIRs will be more erroneous. However, the
effect of this error is compensated by using more neighbors to
average the marginals/scores (i.e., higher D). Therefore, in this
reduced number of pilots scenario we might observe significant
improvement beyond D = 3 as well.

In the SVA case (Fig. 12) QAM signals of order Q = 4
were passed through channels of length L = 64 and sparsity
n = 3 and the corresponding CIRs were estimated using IB-P
with the help of K = 16 pilots. Fig. 12 shows that we do
not gain anything for higher values of D. This is due to the
space-variant nature of the impulse response that adding more
information does not help in the improvement of estimation
accuracy. Therefore, setting D = 1 or 2 might be sufficient in
this scenario.

VII. CONCLUSION

Massive MIMO systems provide substantial performance
gains as compared to the traditional MIMO systems. However,
these gains come with a huge requirement of estimating a large
number of channels. In this paper we have shown that these
channels could be estimated in a collaborative manner where
the antennas collaborate with their neighboring antennas. Three
algorithms based on this collaborative method have been pre-
sented. The algorithms show good performance under different
scenarios and that too while using a relatively small number
of pilots.
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Fig. 11: Experiment 5: Information sharing among antennas
belonging to different neighbor levels (D = 1 − 5) adds to
CIR estimation accuracy in the SIA case.

5 10 15 20 25

10−2

10−1

SNR (dB)

B
it
E
rr
or

R
at
e
(B

E
R
)

D = 1 D = 2 D = 3 D = 4 D = 5

Fig. 12: Experiment 5: In the SVA case information sharing
does not help in the improvement of CIR estimation accuracy.
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